Efficient Multi-Path Signal Routing for Field-coupled Nanotechnologies

Published in International Symposium on Nanoscale Architectures, 2022

Establishing itself among the vanguard of beyond-CMOS candidates, Field-coupled Nanocomputing (FCN) has advanced in recent times due to fabrication breakthroughs of Silicon Dangling Bonds (SiDBs). At the foundation of these breakthroughs, experimental demonstrations showcase the feasibility of FCN logic components and wire segment implementations at the physical limits of scaling. However, automatic design methods for this highly-promising technology remain scarce, as they are impeded by the necessity to conform to particular constraints that differ from those in CMOS technologies. Previously proposed approaches are restricted by their inability to overcome scalability limitations and/or their failure to generate results of adequate quality. In this work, we aim to improve this state of the art %overcome the preceding techniques by addressing the epicenter of performance inadequacy and proposing a distinctive multi-path FCN routing algorithm that is explicitly adjusted to the design constraints dictated by FCN technologies. The resulting approach can be parameterized to generate signal routings for almost arbitrary FCN placements or, in case this is impossible, pinpoint the designer to the unsatisfied connections. Experimental evaluations confirm these abilities on an established benchmark set and demonstrate a runtime advantage of several orders of magnitude over a state-of-the-art physical design algorithm.

Download here