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Abstract—Field-coupled Nanocomputing (FCN) represents a
class of emerging post-CMOS technologies that achieve nanoscale
computation without relying on the flow of electrical current.
Despite their potential, existing FCN physical design algorithms
predominantly focus on minimizing either layout area or ex-
ecution runtime, neglecting the complexity of real-world de-
sign constraints. This work introduces the first physical design
method for FCN that accommodates discretionary cost objectives,
marking a significant advancement in the field. This approach
integrates insights from both simulation and manufacturing,
facilitating more comprehensive and optimized design solutions.
An open-source implementation is available, and the proposed
algorithm has been validated experimentally on a set of common
benchmark functions, demonstrating its effectiveness across a
range of different scenarios and cost objectives.

I. INTRODUCTION

Field-coupled Nanocomputing (FCN, [1]) represents a class
of post-CMOS technologies that operate at the nanoscale with-
out relying on electrical current, aiming to meet the growing
demand for computational power while addressing environ-
mental concerns. Recently, FCN has gained momentum due
to advances in the manufacturing [2] and simulation [3]–[5]
of logic gates using Silicon Dangling Bonds (SiDBs, [6]) and
the physical design [7]–[14] and optimization [15], [16] of
gate-level layouts.

To efficiently design layouts with these logic gates, physical
design algorithms are essential. However, due to the numerous
technological constraints imposed by FCN, these methods typi-
cally focus on either minimizing the layout area, which directly
affects both simulation computational costs and manufacturing
expenses, or on reducing the execution time of the layout
generation process, at the expense of layout area.

While minimizing layout area is a critical target, recent de-
velopments emphasize the importance of considering additional
factors. For example, physical simulation revealed varying
levels of gate robustness to external disturbance in specific FCN
technologies [17]. Furthermore, wire segments incur area and
delay costs comparable to standard gates [16], [18] while wire
crossings impose great hindrances to manufacturability [19].
While logic synthesis and technology mapping can optimize
gate selection and the number of crossings in the logic network,
the actual number of crossings and wire segments ultimately
depends on the specific placement and routing of the gates
within the layout.

Moreover, current algorithms are limited in their ability to
handle more complex cost objectives, such as those incorpo-
rating the distance between gates or weighted combinations of
multiple targets.

This work introduces the first physical design algorithm for
FCN that accommodates discretionary cost objectives, allowing
cost factors to be flexibly adjusted or selected based on specific
needs or preferences, and thereby enabling the integration of
insights from both simulation and manufacturing processes into
the layout design.

An open-source implementation on top of the fiction frame-
work [20] is available as part of the Munich Nanotech
Toolkit (MNT, [21]).1 Furthermore, the generated layouts have
been included in the benchmark suite MNT Bench [22].2

The remainder of this paper is structured as follows: Sec-
tion II reviews technical background on selected FCN tech-
nologies. Section III discusses state-of-the-art design automa-
tion methods for FCN. The physical design algorithm with
discretionary cost objectives is proposed in Section IV, which
constitutes the main contribution of this work. It is experimen-
tally evaluated on a set of common benchmark functions in
Section V. Finally, Section VI concludes the paper.

II. BACKGROUND

This section introduces the fundamentals of FCN technolo-
gies, including Quantum-dot Cellular Automata (QCA, [23])
and Silicon Dangling Bonds (SiDBs, [6]), along with the tech-
nological constraints inherent to most FCN implementations.

A. Quantum-dot Cellular Automata (QCA)
In QCA, the fundamental components are called cells, each

consisting of four quantum dots arranged in a square frame,
which host two charges. Due to stronger Coulomb interaction
along the shorter distance between adjacent dots compared
to the diagonal distance, the charges stabilize in one of two
configurations, as illustrated in Fig. 1a, representing binary
values of 0 and 1. When multiple cells are placed adjacent to
each other, the polarization of one cell influences its neighbor
through electrical fields, thereby creating a wire capable of
propagating information, as shown in Fig. 1b. Additionally,
standard logic gates, such as the majority-of-three (MAJ3)
function, AND, OR, and inverters, can be constructed by
arranging cells in specific configurations, as depicted in Fig. 2
to create gate libraries [24].

B. Silicon Dangling Bonds (SiDBs)
Unlike QCA cells, which consist of four quantum dots,

SiDBs utilize pairs of dots to implement a concept known
as Binary-dot Logic (BDL, [25]) to develop standard gate
libraries [26]. To create SiDBs, which act as atomically-
sized, chemically identical quantum dots, a scanning tunneling

1Code is available at https://github.com/cda-tum/fiction.
2https://www.cda.cit.tum.de/mntbench979-8-3315-2212-4/25/$31.00 ©2025 IEEE
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(a) The two polar-
ization states of in-
dividual cells.

(b) A wire segment transmitting a binary 1 signal via
the repulsion of charges. Cells adjust their polariza-
tion in accordance with their neighbors.

Fig. 1: Elementary QCA cells and a wire segment.

(a) MAJ3 (b) AND (c) OR (d) Inverter

(e) Straight wire (f) Bent wire (g) Fan-out (h) Crossing

Fig. 2: Standard tiles in the QCA ONE gate library [24].

microscope tip [6] is employed to remove hydrogen atoms
from a passivated silicon (H-Si(100)-2×1) surface [27]. Recent
advancements that allow for exceptional precision in the place-
ment of these dots [2], [28]–[31] have enabled the successful
fabrication of a fully functioning SiDB OR gate with a footprint
of less than 30 nm2 [25].

C. Technology Constraints
To assemble standard FCN components into layouts comput-

ing meaningful functionality, physical design algorithms are
commonly applied. However, it has to be ensured that they
operate within the realms of technological constraints imposed
by FCN. Due to these constraints, especially wire routing
is complex, as most implementations are planar with limited
crossing capabilities [19], [32] and signal synchronization has
to be ensured by managing the length of wire segments
throughout the layout [33].

FCN layouts are segmented into uniform tiles, visually
represented by the black outlines around the standard gates
and wire segments in Fig. 2. The total area is then defined
by the number of tiles in the layout. To ensure signal stability
and manage information flow, a clocking mechanism utilizing
four consecutive signals (clock 1 through 4) is implemented.
These signals are distributed to the individual tiles via buried
electrodes embedded within the circuit substrate [34]. To facil-
itate the design process, tailored arrangements of regular clock
zones, also called clocking schemes, have been proposed, such
as 2DDWave [35], where information flow is restricted from
left to right and top to bottom only.

Addressing synchronization constraints, minimizing the
number of crossings and wire segments, and optimizing layout
area are extremely challenging tasks. In fact, finding an optimal
layout with respect to even the single cost objective layout area
is NP-complete [36]. Furthermore, in contrast to traditional

CMOS design, where entire cells are placed and routed, the
design process in FCN requires individual gate placement. Each
gate is subsequently replaced by its corresponding cell repre-
sentation from one of the available gate libraries [24], [26].
This underscores the necessity for a physical design algorithm
capable of managing all these constraints while accommodating
discretionary cost objectives.

III. RELATED WORK: PHYSICAL DESIGN FOR
FIELD-COUPLED NANOCOMPUTING

This section reviews existing placement and routing algo-
rithms, which either focus on optimizing the layout area or the
execution runtime.

A. Exact Approaches
To generate layouts from specifications that are optimal

concerning the layout area, exact physical design algorithms,
e. g., [7], [9], have been proposed. By framing the design task
of implementing a given function in a symbolic formulation
and submitting it to a reasoning engine, the algorithm system-
atically tests every layout size, beginning with the smallest,
to determine whether a realization of the underlying logic
function can be achieved. Additionally, if multiple layouts
exist with the same area cost, exact approaches enable the
consideration of secondary optimization criteria. Due to the
NP-completeness [36] of the underlying physical design prob-
lem, this approach only scales to logic functions up to ≈ 40
gates.

B. Heuristic Approaches
To overcome the scalability challenges of exact methods,

heuristic approaches provide a practical alternative by em-
ploying approximations to generate layouts efficiently. These
algorithms either prioritize scalability by disregarding layout
area overhead altogether or focus on reducing layout area for
logic functions that exact methods cannot manage effectively.

The heuristic algorithms ortho [8] and input-ordering
SDN [10] design large-scale layouts for QCA circuits by
restricting the search space drastically. They achieve scalability
at the costs of result quality, particularly in terms of layout area.

Another method utilizes reinforcement learning for gate
placement [11], [13], where the layout area is incorporated
into the reward function for the learning agent.

C. Search-Based Approaches
To find a trade-off between runtime and scalability, a re-

cent addition called gold [14] generates compact layouts by
representing the physical design problem as path finding in
a search space graph. In this graph, each placement event
corresponds to a vertex, representing the partial layout at that
particular stage. An edge between two vertices, representing
partial layouts a and b, exists if a can be transformed into b
through a single placement event. Similar to finding a path in
a maze, the A∗-search algorithm can be used to determine a
path from the starting vertex (an empty layout) to a goal (a
functionally correct layout with all gates placed).

Example 1: An example of this process is illustrated in Fig. 3
by the means of a 2:1 multiplexer. At the first level, the primary
input can be placed on any tile in the first row. As the algorithm
progresses to the next level, it prioritizes expanding the partial
layout with the smallest area, i. e., the one using the fewest
tiles. By traversing to the final level of the search space graph,
a functional layout with all gates placed is obtained. In Fig. 3,
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Fig. 3: The search space graph created for the 2:1 multiplexer,
with two possible solutions at the bottom.

two possible solutions (A and B) are shown, which are both
functionally correct but have different layout areas. The layout
in the final level with the smallest area (B) is then returned by
gold.

This algorithm acts as a basis for the cost-aware physical
design approach described in Section IV.

D. Post-Layout Optimization
To address the layout area overhead introduced by heuristic

algorithms during the physical design stage, post-layout opti-
mization techniques [15], [16] are employed to eliminate this
excess area and refine the design. This is achieved by relocating
gates to more advantageous positions and shortening redundant
wire segments, thereby refining and minimizing the layout area
even after the initial design is complete.

IV. PROPOSED APPROACH:
COST-AWARE LAYOUT DESIGN

This section details the key principles of the proposed
approach, encompassing the generation of layouts based on
discretionary cost objectives introduced in Section IV-A, the
formulation of these cost objectives in Section IV-B, and
the construction of multiple search space graphs to further
accelerate and optimize the layout design process as described
in Section IV-C.

A. General Idea: Cost-Aware Expansion
The general idea of the proposed approach is extending the

graph-oriented layout design (gold) method discussed in Sec-
tion III-C to enable the creation of layouts guided by discre-
tionary cost objectives. Beginning with an empty layout, gates
are placed at positions that minimize that cost. Consequently,
the entire search space graph is constructed based on the cost
objective, which allows the A∗-search algorithm to choose the
partial layout with the lowest cost out of the possible vertex
expansions.

Example 2: In Fig. 4, a layout with three input pins and
one gate already placed is depicted at the top. Depending
on the selected cost objective, different placements for the
subsequent gate must be chosen. If minimizing area is the
primary objective, placing the AND gate to the right of the
existing AND gate results in a layout with an area of 5×3 = 15
tiles in the bottom left. However, this placement introduces
two wire crossings, as the connection to I1 must cross two
other wires. On the other hand, if minimizing the number

1

2

1

2

3

2

3

4 1

3

4

4

1

2

1

2

3

2

3

4 1

3

4

4 1

2

3

1

2

1

2

3

2

3

4 1

3

4

4

24 1 1

Fig. 4: Depending on the cost objective, different expansions
are prioritized.

of crossings is the priority, placing the AND gate below the
existing AND gate avoids adding any new crossings in the
bottom right layout. This comes at the cost of increasing the
layout area to 4 × 4 = 16 tiles, which is slightly larger than
the other expansion.

B. Cost Objectives
With the proposed method, any discretionary cost objective

can be used, as it is calculated based on the current partial
placement. On top of the number of tiles, number of crossings,
or number of wire segments, also the specific location of gates
can be used, e. g., to maximize the distance between gates
which are more sensitive to close negative charges [17], and
other gates in the layout.

Additionally, this allows for the utilization of composite
cost objectives as in traditional physical design for CMOS
like the Power-Delay Product (PDP), or Energy-Delay Prod-
uct (EDP) [37]. Due to the special technological features and
constraints of FCN, a viable composite cost objective could be
the Area-Crossing Product (ACP):

ACP = A · (|C |+ 1). (1)

C. Multiple Search Space Graphs
To further increase the efficiency of the proposed method,

multiple search space graphs are spanned and searched using
A∗ simultaneously. These graphs are created based on different
design choices, such as the order in which the gates are placed.
Additionally, multiple search space graphs are created for the
four cost objectives—layout area, number of crossings, number
of wire segments, and area-crossing product—since layouts
optimized for these objectives often also achieve a low cost
with respect to the defined cost objective.

Overall, incorporating all aspects proposed above yields a
physical design method that allows for generating designs
optimized for discretionary cost objectives as illustrated by the
following example:

Example 3: For the Parity Check function and the cost
objectives layout area, number of crossings, and number of
wire segments, the proposed algorithm generated three distinct
layouts, as shown in Fig. 5. The first layout (Fig. 5a) has
the smallest area of 50 tiles but requires 4 crossings and 22
wire segments. The second layout (Fig. 5b) achieves the fewest
crossings, of only 3, but has a larger area of 60 tiles and 27 wire
segments. The third layout (Fig. 5c) minimizes wire segments
to 21, but it has a higher area of 54 tiles and the highest number
of crossings, totaling 5.



Table I: Experimental evaluation of the proposed algorithm for different cost objectives.

CIRCUIT [38], [39] COST: AREA (A) COST: CROSSINGS (C) COST: WIRES (W) COST: ACP

Name I / O |N | A |C | |W | ACP A |C | |W | ACP A |C | |W | ACP A |C | |W | ACP

2:1 MUX 3 / 1 4 12 1 3 24 15 0 5 15 12 1 3 24 15 0 5 15
XOR 2 / 1 4 18 1 9 36 21 1 11 42 18 1 7 36 18 1 9 36
Full Adder 3 / 2 5 32 2 19 96 32 2 19 96 32 2 19 96 32 2 19 96
XNOR 2 / 1 6 18 1 6 36 18 1 6 36 18 1 4 36 18 1 6 36
Half Adder 2 / 2 6 24 4 14 120 40 2 23 120 24 4 14 120 28 2 16 84
c17 5 / 2 8 32 1 13 64 36 1 17 64 32 1 13 64 32 1 13 64
Parity Gen. 3 / 1 10 40 4 21 200 48 2 25 144 40 3 20 160 45 2 25 135
clpl 11 / 5 10 90 10 50 990 90 10 50 990 90 10 50 990 90 10 50 990
t 5 / 2 11 48 6 27 336 48 6 27 336 48 6 27 336 48 6 27 336
t_5 5 / 2 11 30 1 11 60 30 1 11 60 30 1 11 60 30 1 11 60
b1_r2 3 / 4 12 56 5 30 336 64 4 30 320 64 4 29 320 64 4 30 320
Parity Check 4 / 1 15 50 4 22 250 60 3 27 240 54 5 21 324 60 3 27 240
1bitAdderAOIG 3 / 2 15 72 7 42 576 90 5 48 540 72 7 42 576 78 5 44 468
majority 5 / 1 17 126 9 81 1260 143 8 75 1287 128 10 75 1408 126 9 81 1260
majority_5_r1 5 / 1 17 60 3 31 240 60 3 31 240 60 3 30 240 60 3 31 240
newtag 8 / 1 17 70 7 38 560 102 1 48 204 70 7 37 560 102 1 48 204
XOR5_R1 5 / 1 26 90 9 46 900 144 7 80 1152 90 9 46 900 90 9 46 900
1bitAdderMaj 3 / 1 29 200 20 115 4200 238 15 117 3808 200 20 115 4200 238 15 117 3808
cm82a_5 5 / 3 42 234 44 176 10530 324 40 197 13284 234 44 176 10530 234 44 176 10530
2bitAdderMaj 5 / 2 54 399 39 195 15960 432 34 190 15120 432 34 190 15120 432 34 190 15120
xor5Maj 5 / 1 70 759 70 373 53889 759 70 373 53889 759 70 373 53889 759 70 373 53889
parity 16 / 1 103 549 33 260 18666 630 27 322 17640 549 33 260 18666 549 30 260 17019

I , O, and |N | represent the number of primary inputs, primary outputs, and nodes in the logic network, respectively; A, |C |, |W |, and ACP denote the
resulting layout area, number of crossings, number of wire segments, and area-crossing product, respectively. The timeout for each layout generation was set
to 1min.

214

1432

2

1

4321

1

4

2

3214

4

3

143

3

2

4

321

1

4

214

1

21

3

43

3

4

2

2

3

321

(a) Layout with
50 tiles of area,
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60 tiles of area,
3 crossings, and
27 wire segments.
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Fig. 5: Three layouts for the Parity Check function based on
different cost objectives.

V. EXPERIMENTS

This section presents the results of an experimental evalua-
tion of the proposed physical design algorithm, conducted on
logic networks from a set of benchmark circuits commonly
used in the field [38], [39]. To show that the proposed method
is able to generate layouts based on any specified cost objec-
tive, the evaluation considers four different ones: layout area,
number of crossings, number of wire segments, and the area-
crossing product. Furthermore, the correctness of the generated
layouts has been validated using formal verification [40]. The
comparative analysis was conducted on a macOS 13.0 machine
with an Apple Silicon M1 Pro SoC with 32GB of integrated
main memory and set a timeout of 1min for each layout
generation.

The results presented in Table I show that, for each of the
four evaluated cost objectives, the proposed algorithm finds
a solution that is as good as or better than those obtained
using the other cost objectives. The location of a gate directly
affects to the number of wire segments needed to connect it to
other gates. Given this strong correlation between layout area
and the number of wire segments, layouts with minimal area
overhead often also have the fewest wire segments, and vice
versa. This can be seen by the 13 layouts found with layout
area as cost objective that also have the lowest number of wire
segments. Furthermore, 18 layouts found with the number of
wire segments as cost objective also encompass the smallest
area. For the logic functions Full Adder, t, t_5, clpl, and
xor5Maj, the same layout was found for each cost objective,
as it simultaneously minimizes area, crossings, wire segments,
and the area-crossing product.

The results obtained from this experiment show the effective-
ness of our proposed approach in generating layouts based on
any discretionary cost objective, using layout area, number of
crossings, number of wire segments, and area-crossing product
as examples.

VI. CONCLUSION

With the rise of Field-coupled Nanocomputing (FCN) as
a class of promising post-CMOS technologies, it has be-
come essential to incorporate insights from recent advances
in simulation and manufacturing into the automatic physical
design process. This work presented an approach capable
of generating layouts based on discretionary cost objectives.
Its effectiveness was demonstrated experimentally on a set
of benchmark functions, focusing on four exemplary cost
objectives: layout area, number of crossings, number of wire
segments, and area-crossing product. These results are crucial
because they demonstrate the potential of our approach to
address the complex and varied design requirements of FCN
technologies, paving the way for more efficient and adaptable
designs as this emerging technology continues to evolve.
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